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MINIMAX AND DUALITY FOR LINEAR AND NONLINEAR

MIXED- INTEGER PROGRAMING

by Egon Balas

This paper discusses duality for linear and nonlinear programs

in which some of the variables are arbitrarily constrained. The most

important class of such problems is that of mixed-integer (linear and

nonlinear) programs. Part I introduces the duality constructions;

part II discasses algorithms based on them.

I



PART I. SYMMETRIC DUAL MIXED-INTEGER PROBLEMS

1. The Linear Case

Consider the pair of dual linear programs

max cx min ub

(LP) Ax +y = b (LD) uA - v = c

xy > O uv 0 0

where A is an m X n matrix and (l,...,m] = M, (l,...,n) = N.

The main result of linear prograruimng duality theory [1] is that

the primal problem has an optimal solution if and only if the dual has

one, in which case, denoting the two optimal solutions by (7,Y) and

(•li) respectively, we have cx - u-b, and fl = 0. These relations

play a central role in linear programming.

We wish to examine what happens to the above duality properties,

if we constrain some of the primal and dual variables to belong to arbi-

trary sets--like, for instance, the set of integers. Suppose the first

nI components of x and the first mI components of u (0 n 1 - n,

o g ml < m) are arbitrarily constrained, and the following notat.on is

introduced: (xl,...,xnl) = x , (Ul,...,u ) = u 1 , x =

u - (u 1 ,u 2 ), (l,...,n 1= NV, [l,...,m 1 M Then the above pair of

problems becomes

max cx min ub

Ax + y = b uA - v = c

(LPI) x,y ; 0 (LDI) u,v _ 0

x 1 e uleu1

x eX g
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where X and U are arbitrary sets of vectors ;n the n1 -dimensional and

M -dimensional Euclidean space.
14

Let us partition Ab,cy and v in accordance with the partitioning

of x and u:

11 12 )l 1 2 1 2(Al A b = 0,b) ,c (cc)
(1.1) A y 2 1 22 = d2}M

( A2 A2 }1ýY - (Y= I.yl 2 ,v - (v 1 " V .

N1 N2

N

Unless the constraints x lcX and u SU happen to be redundant, it

is clear that cx < ub for any pair x,u satisfying (together with some y,v)

the constraints of (LPI) and (LDI) respectively: a "gap" appears between

the two optimal objective function values.

Suppose now that we attempt to dispose of this gap by "relaxing"

each dual cunstraint associated with an arbitrarily constrained Frimal

variable, and each primal constraint associated with an arbitrarily con-

strained dual variable; in other words, by dropping the nonnegativity

requirement for each dual slack vj, JeNl, and for each primal slack yi'

ieM,. Suppose, further, that while thus permitting the primal and dual

constraints JeNl, ieMl to be violated, we want the extent of this viola-

11 1 1
tion, as measured by the weighted sums -v x and u y respectively, to

be as small as possible. This points towards replacing the initial primal

and dual objective functions by

(12 11 1 1 11 1 12 2
(1.2) miy max cx + uy =min max cx +u(bAx-Ax

u x uI x

and
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11a 1 U 2 211 1
m1.3) ma.a rin ub- vx = max min ub- (u A +u2A -c )x

x U x1

respectively.

*However, it turns out that in order to obtain equality of the two

objective functions, the term -u AlxI, occurring in both (1.2) and (1.3),

has to be done away with. Thus, finally we are led to consider the following

pair of problems:

min max cx + u y +ulA xi u~1x
Ul X

Ax + y =b

(P) x11aulcu1

2 2
x ,y ; 0

I
y unconstrained

max min ub - v1 x 1  11 u 1A1l
X- u

uA - v = c

(D) U. u1 eU1,x Z1
2 2
u ,v 2 0

1
v unconstrained

ni m1 Rn 1 ;1
Here, as before, X and U C t are arbitrary sets of vectors

in the respective spaces, with the only restriction that they are supposed

to be independent of each other and of the other variables, i.e., none of

them i3 supposed to be defined in terms of other problem variables.

Since in the above pair of problems y is uniquely defined by x and

v is unlquily defined by u, a solution to P will be %rittert as (x,uI)

an~d a 1 1 'j"' k, 1
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We define (D) to be the dual of (P). It is easy to see that the

duality defined in this way is involutory (symmetric): the dual of the

dual is the primal. Also, it is easy to see that the mixed-integer linear

program is a special case (actually the most important special case) of (P),

namely the one in which XI is the set of nl-vectors with nonnegative

integer components, and m.=0, i.e., M1 =.

The main feature of the above pair of dual problems As the special

relationship between each primal variable x and the associated dual

slack vji, and between each dual variable u, and the associated primal
4

slack yi' namely:

x arbitrarily constrained )---v. unconstrained
(1.4)

Yi unconstrained < ui arbitrarily constrained

Y, ;_ o0--- - ui > 0
i"

We shall now state a lemma which will be used in the proof of the

next theorem.

12s ,.,,sp be elements of arbitrary vector spaces. A vector12 1

function G(s ,s ,*..,sp) will be called seara~ble 4ith respect to s

if there exist vector functions H(sl)(independent of s2 -,P) and

K(s ,2°.,sp)(independent of sl), such that

1(~2 ,s 1 s2 S
G(s 1s 2 p) H(s ) + K(S ,$..#p).

G(S Is ,...,sp) will be called coompenetwi eparable wit

to S. if each component g. of G can be written either as gi(s1), or as
91i(s2,...sp).



Note that none of these definitions implies separability in each

component of s8. Obviously, the first of the above two definitions also

t, applies to scalar functions (i.e., one-component vector functions).

Let r,s,t be elements of arbitrary vector spaces. Let f(r,st)

be a scalar function and G(r,s,t) a vector function. We have.

m1. 1. If f(r,s,t) is separable and G(r,s,t) is componentwise
t

separable with respect to r or s, then

La up{f(r,s,t)1G(r,s,t)r O} sup if u~~~~~Grst:ý0
a r,t r 8 t

Zx•L. Suppose f(r,s,t) = f (r) + f 2 (s,t), and the constraint set can be

written as Gl(r) _• 0, G2 (s~t) < 0.

Then both sides of the equality in the Lemma become

sup {f(r) IGI:':) < + ilf sup 2(st) (1

s t

Similarly, if f(r,st) E fI(r,t) + f2 (s) and the constraint set can

be written as G,(r,t') K 0, G2(s) • 0, then both sides of the equality can

be written as

sup Ir G(rft) • 0- + inf" (s)IG2(s) , 0.•
rt s

y2 2

To state our next theorem, let us recall that y and v are vector
1 2 1 2

functions of x ,x and u ,u resvectively:

2 2 211 22 2 2 112 u222 2
y b -Ax Av I U +u " c
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Theorem 1.1. Assume v (or y2) to be componeatwise separable with

respect to uI (to x ). Then, if (P) has an optimal solution C(,tl), there

-2 -2
exists u such that (,3E , where U = (t- ,u ), is an optimal solution to

(D), with

(1.5) min max cx + ulyI + u1A llx = max min ub- vIx + ulA xl ,

ulu1 xeX xlex ueU

-2-2 -2-2
(1.6) u y 0, vx = 0

and

2 l12 -.2 -2 2 2 L-1
(1.7) (c -uA )x -u(b - A X = 0

Proof. Suppose v is componentwise separable with respect to u

(An analogous reasoning holds for the case when y2 is componentwise separable

with respect to xl1

(D) can be stated as the problem of finding

(1.8) w = max mi m in cIx+ub +u 2(b2A 1x )Iu22 A c2 u1 A}1
1 1 1 1lu u >0

x ICXIu 1CU 1 - :

In view of the separability assumption, lemma 1.1 can be applied to

(1.8), i.e., max and mi can be interchanged. Then we have
u 12J22c2-112

(1.9) w = min max ic Ix+u 1b+min(u
2 (bu 2 _ 2 1  ju A c 2u 1A

uCUI xEX u>

On the other hand, (P) can be written as the problem of finding
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(1.10) z m~in 1a C 1 x2ŽOH ((c'-uA 1 )x2 I 22x 2 <b2_ 21 l 1

u 1 I xlO1 x2IO

For any given u and x the linear programs in the inner brankets of

1 -- 1 --
(1.9) and (1.10) are dual to each other; and stice for x = x and u = u

the vector x is suppos to be an optimal solution of the livear program

-1
in (1.l0)--or otherwise (•,u ) could not be an optimal solution of (P)--

it follows that the linear program in (1.9) also has an optimal solution

-2 1 1 -~2u , and that for (u,xI) = (U,R), where ' = (-l,u u), the objective functionI~ii
of (D) takes on the value of z. But then ( ,I) must be an optimal solu-

.l 1tion to (D); for if it is not, i.e., if there exists some x •X such anat

S> z, where

(1.11) W=min {c X+u b +min [2 (b2 -A uAl 12 A22 >

u I2
I.

then, following the above reasoning, there also exists a vector x such

that (XI ), where u is the value taken on by u in (1.11), is a feasible

solution to (P) with an objective function value equal to a--which contradicts

,1
the optimality of (3Eu ) for (P). This proves that (1.5) holds, while (1.6)

follows from the fact that x and u are optimal solutions to the linear pro-

grams in the inner brackets of (1.10) and (1.9).

On the other hand, from

-.22_ 21-1 122-2
11 (b -A 2• -A22-) = 0

2 12 -1 2 A22 2 0
(c -UA A )x
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we have (1.7).

According to the above theorem, the main results of linear programming

duality theory carry over to the pair of dual problems (P) and (D), provided

v (or y 2) is componentwise separable with respect to uI (to x ). Denoting

by IBi. and 1B~ j respectively the norm of the i-th row and of the j-th

column of a matrix B, the above assumption can also be expressed as a

requirement that the matrix A satisfy the condition (see Figure 1):

(1.12) A l-ItA~I 1 0 je.N2  or A.IA -IA,.I 0 1 iM_

A11  A12

A22
A21 A22A

NM2

Figure I

This assumption is obviously a genuine restriction. However, it doe,

not exclude from the class of problems to whic :he above results apply any

of the special cases of knowui interest. In particular, it does not exclude

the general all-integer and mixed-integer linear programs: since in these
= 12

cases MI =0, A is a zero matrix and the separability requirement is

satisfied.

= = = = = = = = = = = = = = = =
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The above duality construction is rooted in the ideas of Benders [2]

and Stoer [3]. It also bears some relation to the general minimax theorem

of Kakutani [4].

Additional properties of the pair of dual problems (P) and (D) are

discussed in [5]. They include conditions for the existence of feasible

and (finite) optimal solutions, uniqueness of the optimum, the relation-

ship between(D)and the dual of the linear program over the convex hull of

feasible points to a mixed-integer program. An economic interpretation

is also given in [5] in terms of a generalized shadow price system, in

which non-negative prices are associated with each constraint, and subsidies

or penalties with each integer-constrained variable of a mixed-integer

program. (For an alternative interpretation of pricing in integer pro-

gramming see [6].)

2- The Nonlinear Case

We now discuss extensions of the above duality construction to the case

of a nonlinear objective function and constraints [7],[8],[9]. This time

our starting point is the pair of symmetric dual nonlinear programs studied

by Dantzig, Eisenberg and Cottle [10]. Let K(x,u) be a differentiable

function of xcR and ucRm, and let vxK(x,u) and VuK(x,u) be the vectors

of partial derivatives cZ K in the components of x and u respectively.

The nonlinear programs of [10] can then be stated as

max K(xu) - uVuK(x,u)

(NP) V K(x,u) ; 0

x,u _ 0
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and

min K(x,u) - xV K(x,u)

(ND) VK(x,u) e 0

xu _ 0

The generality of this formulation consists in the fact that K can

be chosen so (see [10]) that the above pair of probiems reduces to any of

the dual programs studied by Dorn [11], or Cottle [12] or Wolfe [13],

Mangasarian [14] and Huard [15].

The main result of [10] is that, assuming K to be twice differentiable

in u, and concave in x for each u, convex in u for each x, if (NP) has an

2optimal solution (-x,t) such that the (Hessian) matrix VuK(3-,-) of second

partial derivatives of K in the components of u, evaluated at C•,U), is

positive definite, then (3x,u-) is an optimal solution to (ND) and

Uv7K(F,U) = R VK(E,u) = 0

i.e., the two objective functions are equal.

As in the linear case, we now generalize the above pair of dual

nonlinear programs by constraining some of the primal and dual variables

to belong to arbitrary sets. Partitioning x and u in the same way as

before and denoting again by X and UI arbitrary sets of n1 -vectors and

m1 -vectors respectively, we are led to consider the pair of problems

min max f = K(x,u) - u V 2K(x,u)
uI x'u2 u

S- 2 K(x,u) > 0

U
(P) xl x1 , l u1 1

x 2X I u

Ž2u 0



and

max min g = K(x,u) - x2 V 2 K(x,",)
X1 x2 ,u

V 2 K(x,u) • 0

(D) 
x

X1 U1 C111

SX 2 'u 2 U2 2
x ,u > 0

where V 2 K(x,u) and V 2 K(x,u) stand for the vectors of partial derivatives
x u 2 2

of K in the components of x and u respectively.

We define (D) to be the dual of (P). Obviously, the duality defined

in this way is symmetric (involutory). It is easy to see that a mixed-

integer nonlinear program is a special case of (P), in which X1 is the

set of n 1-vectors with nonnegative integer components, m1 = 0, and

(2.1) K(x,u) = f(x) - uF(x)

with f(x)eR and F(x)cR.

In the following, we shall assume--as in the linear case--that the

sets XI CR and U 1 R , while arbitrary, are independent of each other

and of the other variables of the problem. Also, the concept of separability

with respect to u (or x ) will again be used in the sense defined in section

1, i.e., it will not imply separability in each component of u (or x ).

When K(x,u) is twice differentiable in the components of x2 and u 2

let v2
2 K(i,u) and v22K(uxU) be the (Hessian) matrices of second partial

X U 2 2

derivatives of K in the components of x u respectively, evaluated

at •,Z). We then define the following gegularitv condition for (P) and (D):

(a) If (7,1j) solves (P), v2 K(Z,-u) is positive definite;
u

(b) If (X,,) solves (D), 2 K(^,') is negative definite.
X
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Denoting the constraint sets of (P) and (D) by Z and W respectively,

we have

Theorem 2.1. Assume that
2 ~12

1. K(x,u) is concave in x2 for each x ,u, and convex in u for each

x21u

2 2
2. K(x,u) is twice differentiable in x and u; (P) and (D) meet

the regularity condition.
1

3. K(x,u) is separable with respect to u or x

Given 1,2,3,if Ci,i) solves (P), then it also solves (D) and

(2.2) min max (fl(x,u)eZ] = mar min (gl(x,u)eW}uI x'u2 x1 x2,lu

with

-2. 2 ,Xi(2.3) u V 2 K U) = x .V 2 K,) =

U x

Proof. Denote

z = min max (fl(x,u)eZ]
ul x,u 2

(2.4)

w max min (g(x,u)cW)
X1 x2 ,u

Assume that K(x,u) is separable with respect to u , i.e.,

(2.5) K(x,u) = KI(uI) + K2 (x,u 2 )

(An analogous reasoning holds if K is separable with respect to xl.

Then z can be written as

z - mmn ma r 1(u 1 ) + K2 (xu 2 ) - u 2 V 2 K2 (x,u 2 ) I 2 K1(xu 2 )-0}

ulcUl x1cX1  u u

x , u2 >0
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or

(2.6) z amax min {K (u) + f 2 (x }
xleXI I1U1

where

(2.7) f ( max {K2 (x, u2  - u2 V2 K 2 (x, u?.)IV 2 K2 (xu 2 )>:O

and w can be written as

(2.8) w= max min {K1 (uI) + g2 (x}

xlCX1 ulcu1

where

0?9) g2 (x1) I n {K2 (xu 2 ) _ 2 2 K2(xu2) IV 2K(xu 2 )•0}
x2 ,u2Ž x x

For any given xI , (2.7) and (2.9) are a pair of symmetric dual nonlinear

programs of the type discussed in [I0]. Hence, using the above mentioned

results of [10], in view of assumptions 1 and 2 we have, for x = x1,

-2 2KXl'u -2) 2= x)

(2.10) uv 2K , VK X, )
u x

and

(2.11) f 2 -1 ) = 1 1)

It remains to be shown that x,-u is indeed optimal for (D). If this

Al 1 1A Iis not the case, there exists X CX such that g2 ( 1) > g2( OR But then,

in view of the regularity condition for (D), we have

(2.12) g2 (I) = f 2 ( I) > f 2 ()
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which contradicts the optimality of (Cf,u-) for (P).

This, together with (2.6),(2.8) and (2.11), proves (2.2), whereas

(2.3) follows from (2.5) and (2.10).

Q'ead.

Assumptions I and 2 are the same as the ones required by Dantzig,

Eisenberg and Cottle [10] in the absence of arbitrary constraints, except

that the regularity condition is required in [10] only for the primal.

Assumption 3 is an additional requirement, which represents a genuine restric-

tion. However, this restriction does not exclude from the class of problems

for which Theorem 2.1 holds the most important special case, namely,

mixed-integer nonlinear programs. Indeed, when ml = 0 then u disappears

from the problem, which means that the separability requirexent is met.

The assumptions of Theorem 2.1 can be weakened for various specific

functions K(x,u). Thus, for

(2.13) K(x,u) a cx + ub - uAx + u1 A lx

(P) and (D) become the pair of dual problems discussed in section 1. In

this case assumptions 1 and 2 can be dropped (1 is satisfied by definition,

2 is simply not required), whertqs assumption 3 can be replaced by the weaker

separability requirement of Theorem 1.1 (weaker, since assumption 3 would

require A12 or A to be a zero matrix).

Further, for

(2.14) K(x,u) = cx + ub - uAx + 2 (xCx - uEu) + ul A lx

where
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(215 (11 : 1) and E (11 E )
(2 5)C c 1 2] E22 E 22

are symmetric matrices of order n and m respectively, wiLt C2' and E22

negative seri-definite and of order nI nd ml respectively, our pair of

dual problems becomes

min max cx + I xCx + uEu + u yI + ulA x
u u2 X- u 2 1 1

Ax + Eu + y b

x exI , u euI
(P.) ~2 2 ~2 o

x ,u ,y ;ý_0

1
y unconstrained

max min ub- 'I uEu - xCx vx -t- u A x
x- x2 ,u 2 2

uA - xC - v c

u~eU1 , x Iex
(D1)

2 2 2
U ,x ,v > 0

1
v uncnnstrained

This generalizes the symmetric dual quadratic programs of Cottle [12]

by letting some of the primal and dual variables to be arbitrarily con-

strained. In this case, the regularity condi.tion is not required, and •h2

separability assumption can be weakened, viz., replaced by the require-

21 21ment that E = 0 and v be componentwise separable with respect to u
or 12 0 and y be componentwiso separable with respect to x
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The mixed-integer quadratic programming problem is a special case

of (Pl), in which XI is the set of n 1-vectors with nonnegative integer

components, mi = 0 and E is a null matrix. (For a detailed discussion

of the quadratic case, see [7].)

Finally, let us consider the case when K(x,u) = f(x) - uF(x),

where f(x) is a scalar function and F(x) an m-component vector function

of xeRn, and let F(x) = [F1(x),F 2(x)], where F (x) and F2 (x) have mi

and m-m. components respectively. Then our pair of dual problems

generalizes the dual nonlinear programs studied by Wolfe [13],

Mangasarian [14], and fluard [15]:

miy max f(x) - u F(x)
U X

F2 (x) • 0
(P2)

x CX ,u eu

2
x >0

2

max min f(x) - uF(x) x V [f(x) uF(x)]
xI x 2 2u x 2

V 2 [f(x) " uF(x)] < 0
x

(D2) *t 11

X'eX ,u CU

2 2
x ,u >.0

Assumptions 1,2, and 3 of Theorem 1 are now to be maintained, but

the regularity condition for (P) and (D) can be weakened so as to read:
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(a) If (xiu) solves (Pi), the inequality set F2 (lx 2 : 0 satisfies

2 -2the Kuhn-Tucker constraint qualification [16] at x = x.

(b) If (X,^,) sal es (D2), the matr'x 2 2 [f() - uF(X^)] is nonsingular.
I

Theorem 2.1 then becom~es

_1A,1J. Given tlpe assumptions 1,2,3 of Theorem 2.1, if (P2)

1,_-Z -1 ,-2
has an optimal solution (i-,ii ), there exists u such that (iR,U) = ( ,u )

is an optimal solution to (D2). Conversely, if (D2) has an optimal solution

0,u) then ( I,) is an optimal solutlon to (P2).

In both cases, (2.2) and (2.3) hold.

3.L.Liearization of the Dual

An undesirable characteristic of the dual problems (P) and (D)

discussed in the previous section is the presence of the arbitrarily

constrained primal variables xI in the dual inequality set. This was not

the case for the linear problem discussed in section 1.

Now consider again the nonlinear problem (P) of section 2, and let

K(x,u) be also differentiable in x on the set Ix 1R Ix>_0] for each x ,u.

Then consider the problem [9]:

max min g' = K(x,u) - xv K(x,u) + sv iK(x,,L)
x

s X~u x

V 2K(x,u) < 0
x

(D') 
1Sex ul1CI

2
xu Ž 0

where s is an nl-vector. Let W' be the constraint set of (D').
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The inequality set of (D'), unlike that ofOD),is independent of the

arbitrarily constrained variables seX ; and the optimand of (D'), unlike

that of (D), is linear in these same variables seX . We shall show,

however, that with two additional assumptions (D') is equivalent to (D).

In view of its linearity in the arbitrarily constrained variables s, (D')

will be called the linearized dual of (P).

Theorem 3.1. Assume 1,2,3 as in Theorem 2.1 (regularity also assumed

for (D')), and

4. K(x,u) is concave in x on the set Ix R xI 1 0} for each x 2u.

5. X1 C fse R Is > o0.

Then the follcwing statements hold:

a) If (•uu-) solves (P), then (s,3,u), where =x , solves (D').

b) If (C,u) solves (D), then CZ) solves (P) and (•,•,•), where
= ~l
= x , solves (D').

c) If (x,^,•) solves (D'), then x = x1 and (•,%) solves (P) and (D).

d) In each of the cases a), b), c),

(3.1) min max [fJ(x,u)eZ] = max min fg'l(s,x,u)cW'l = max min [gJ(x,u)CW}.
uI x,u 2  s xu xI x2 ,u

Proo.. Consider the problem (P'), which clearly is just another way of

writing (P) under assumption 5 above (here s is an n1 -vector):,

rmin max 2K(x,u) - u V 2K(xu)
UI SXU'u U

V 2 K(x,u) _ 0

u

(1') - s 0
I

-x 1 0+ s 0

seXI ' u1 ul

x,u Ž0
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We now restate (P') in the form (P). Let

1 n 12 1 ml • m-ml+2n I I n, 1 2 nl

1 2 12
Q (•I, )= (s,x) , where I X

(IT)= (ut.,t 2 ) where u, 1 (u 2 ,t 1 ,t 3 )

H(ý,J) = K(x,u) + (t -t 2)(x -s)

Then (P') can be stated as the problem (P"):

min max H(Q,) H- (,)

v HQ~,'T) Ž: 0

IxI 2u

We now write the dual (D") of (P"):

amin H,)- .2 (,)

(7 , 2 H() < 0

(D")
11 1

•Ix ,7 leu

2 , 0

which upon substitution becomes
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max mn 2 K(xu) " xv K(xu) " (t -t 2)s

S Xu't ,t x

V K(x,u) + t1 _ t 2 •0
x

V 2 K(x,u) •0(3.2) x

1e 11Cs6XI , uleu1

22

x,u ,tI,t2 > 0

Introducing the slack vector p Ž 0 in the first inequality set of (3.2)

and substituting in the objective function for tI t2andsubtittin i th obectve untio fo t ~t, we obtain

max min K(x,u) - xvxK(x,u) + sv iK(x,u) + sp
S xujp x

V 2 K((xu) < 0

x
(3.3) 

1 1 1 IxPu ,p > 0

Since p is nonnegative, (3.3) is equivalent to (D') in the sense that

c) if (-s,,,•,T) solves (3.3), then - = 0 and (?,i,iu) solves (D');

6) if (s,xu) solves (D'), then (s,x,up), where ^ = 0, solves (3.3).

Then statement a) of Theorem 3.1 follows from the application of

Theorem 2.1 to (P'). Here we need assumption 4, since x plays in (P') the

role of x2 in (P).

To obtain statement b), note that (-,S, ýW', where s = x . Also,

from Theorem 2.1 applied to (D), (Xur) solves (P), hence (ZZ,u-) solves (P').

•,• • ,•" r ,, • " ',, ,I I



Since (P) is assumed to meet the regularity condition, so is (P'),

which implies that (Z,X',Zi) solves (DI).

Statement c) follows from the application of Theorem 2.1 to (D').

The fact that (sA,1 solves (P') implies that 6 = x 1and (XA,i*) solves (P).

Applying again Theorem 2.1 to (P), one sees that (X,4 solves (D).

In each of the cases a),b),c).,statement d) follows directly from

the proofs given above.

O.e.d.

Theorem 3.1 on the linearization of the dual constitutes the basis of

the method for solving mixed-integer nonlinear programs presented in

section 5.
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PART II. ALGORITHMS

The theory presented in Part I can be used for computa-

tional purposes. In the linear case, it leads to the same class

of algorithms to which Benders' partitioning procedure [2)

belongs. We shall describe a variant which differs from Benders'

procedure in that it requires the solution of a single pure inte-

ger program instead of a sequence of such programs, and which is

essentially the same as the one described by Lemke and Spielberg

[17] (The differences will be mentioned later).

In the nonlinear case, the above theory leads to a new

algorithm for solving pure or mixed-integer nonlinear programs,

which can be regarded as a generalization of Benders' partition-

ing procedure (and its variations) to the nonlinear case.

4. Implicit Enumeration for Mixed-Integer Linear Programs

We shall consider the mixed-integer programming problem in

the special form where the integer variables are zero-one varia-

bles ([183 and [7]) describe techniques for bringing any integer or

mixed-integer linear program to this form):

1 2rain c 1y + C 2x

Aly + A2x > b
(P)

yj = 0or I, j e N

xh> O, hc H

Ihr n 2 c € p m 1 A2
where cm R 2 R b Rmn (mXn) (m XP) are given,

and (1,...,m3 M, (l,...,n) = N, (l,...,p =IT.

The dual of (P) is then the problem (see Section 1)
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min max ub + v 1y

y U

uA1 + v1 = c1

uA2 2 2uA+ V =C
(D)

y j = 0 or 1, j e N

v2 > 0, he H

ui 0, i cM

or, after substitution of v (which is unconstrained)

min maxg ub + (cI - uAl)y
y U

()2 < C2
(D) A c

y = 0 or I, j e N

U, > 0, i cM

Let

(4.1) Y = (y e R nyj = 0 or I, 1 , N]

For each y e Y, (D) becomes a linear program L(y) in u.

One could therefore solve (D) by sQlving L(y) for each element

y of the finite set Y, and by choosing that y e Y which

minimizes the optimal (maximal) solution of L(y). On the other

hand, one could use an implicit enumeration technique [19] if

one could generate constraints to be satisfied by any y e Y

which is a candidate for optimality. The reason why this can

indeed be done, is that the inequalities of (D) are independent

of y.

Assume we have solved L(y) for a sequence y1 , y 2, .. yq

of vectors y e Y. We shall ignore the trivial case when L(y),

and hence (D), has no feasible solution (the" P has no finite

opt I mu m) .
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Let

(4.2) [l,...,q) = Q Q1U Q2

where

(4.3) Q, (k e QJL(y k) has a finite optimum]

Q2 = (k e OIL(y k) has no finite optimum]

k yk)

For k e QV let u be an optimal solution of L(y , and

let gk be the optimal value of the objective function of L(yk

Further, let

(4.4) g* mn gk

keQ 1kcQ

For k C Q2, L(y k) has a feasible solution of the form

(4.5) uk + Xtk % > 0

where uk is an extreme point and tk a direction vector for

an extreme ray of the convex polytope of feasible solutions to

L(y k), tk being a solution of the homogeneous system tA2 < 0.

Since the constraints of L(y) are independent of y, any
k t~k)

optimal solution u to a linear program L(y ), as well as any

feasible solution u + Xtk of the type described above, is a feasible

solution to all other linear programs L(y). Hence, we have

Theorem 4.1. Any y c Y (if one exists) such that

(4.6) max (u(b- A1y)+ c1 yuA2 < c2] < g*

u>0

satisfies the constraints

(4.7) (cI _ukA)y < g - , e

and
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(4.8) -tkA< tk , k Q2

Proof. Suppose y violates (4.7) for p e Q, i.e.

p1 *

Pb + (c1 uPAIu)y > g

Then, since up is a feasible solution to L(y),

max tu(b - A1 y) + clyluA2 < c > uP(b -A Iy) + ely_ g*
u>O

which contradicts (4.6).

On the other hand, if y violates (4.8) for p C Q2'

i.e., if tý(b - A y) > 0, then the objective function of L(y)

can be increased indefinitely by setting u = up + Xtp, X > 0,

and by increasing ) , which again contradicts (4.6),

We can ,ow systematically search the set Y by applying the

exclusion tests of implicit enumeration [18], [19] to the con-

straints (4.7), (4.8). Whenever a y e Y is found that satisfies

the current constraints, it is introduced into the objective

function of the linear program L(y) which is then post-optimized.

This in turn yields a new constraint (4.7), and possibly (4.8),

which is not satisfied by the current y. It may also yield an

improved value of g . A typical iteration of the algorithm

consists then of the following two phases:

I. (Steps 1-4 below). Using implicit enumeration techniques,
s

find a vector y e Y satisfying tiLe current constraints (4.7) and

(4.8). Then go to II.

II. (Steps 5-6 below). Solve (post-optimize) L(yS), add a

new constraint to (4.7) and po.-sibly to (4.8), and (possibly)

update g Then go to T.

Whenever a ,ie% phase I is starts,4, theo irii cir ,mnureratioi,
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over the set Y is continued from where it had been interrupted

at the end of the previous phase I: those elements of Y that

had been excluded as infeasible for the current constraint set,

do certainly not become feasible by the addition of new con-

straints. The procedure ends when there is no y e Y satisfying

the current constraints (4.7) and (4.8). Then, if 1 0, the

vector y associated with the current g yields an optimal

solution, or, if Q1 = 0, (P) has no feasible solution at all.

To discuss the algorithm in detail, we shall change the

notation. Q and Q2 will now be considered disjoint ordered

sets (i.e., each inequality (4.8) will have a different index

from each inequality (4.7)), denoted by Q and T respectively,

and the two sets of inequalities (4.7), (4.8) will be written as

a single set

(4.9) E a•jy > 2. , i e V = Q U T

jeN -1

with

- c for i e Q
(ij t AIfor i e T

(4.10) i * i
" uib +eg + for i e Q

St i b for i e T

where e is a positive number sufficiently small to enable

us to replace the strict inequalities of (4.7) by ordinary

inequalities, without unduly excluding from consideration any

y c Y. In OLIher words, e can be any number satisfying

(4,11) ij -a
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for all pairs of indices j,h such that aij ih"

We are inLerested in generating vectors y e Y satisfying

(4.9). Any y e Y will be called a solutiun, and a solution

sacisfying (4.9) will be called feasible. In the process, we

shall generate a sequence of pseudo-solutions al,...,#s, a

pseudo-solution (or partial solution) *k being defined as a

set of 0-1 value-assignments to some components of y:

k k(4.12) *k = (Yj = j, j = Jp-l' .. ,q} , < _ n

where each 8 . represents one of the values 0 and 1.
J

Let 1  (and i k respectively) be the set of those j e N
.th

such that the j component of y is assigned by *k the value 1

(the value 0), i.e.,

13 11 I N16 k i= 1,Jo = j e N1 k =0)
(4.13) Jk = k= 1

and let

(4.14) Nk = N - J 0

We shall say that, at the stage characterized by the pseudo-

solution #k' YJ is fixed at 1 if j e fixed at 0 if j e Jk'

and free if j e Nk.

The solution yk defined by

(4.15) 6 k for j e Jk1J
k 3 Jkk

YJ= 0 for j e Nk

will be called the solution associated with *k"

In order to keep track of the sequence of pseudo-solutions

that will be generated, ,e shall associate with this sequence an
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arborescence (rooted tree) 0.,. Each node h of Ocorresponds
h

to a pseudo-solution 4h' to a solution y associated with

*h via (4.15), and to a linear program L(yh). Each arc (h,k)

of O'corresponds to a pair of pseudo-solutions *h' *k such

that *k has been generated from *h" Since the generating pro-

cedure is such that

1 10 10 1 1(4.16) Jh c Jk' Jh, Jk' hJk IJF11 = 1

i.e., *k is generated from *h by fixing at 1 a free component

of y, an arc (h,k) will also be associated with the (unique)

variable yj which is -ree at node h and fixed at I at node k.
1C 1

For the same reason, any pseudo-solution *t such that Jh Jt

and Jc Jo, will be called a descendant of *h' if actuallyan h Jr

generated, and a potential descendant otherwise.

The implicit enumeration procedure that we are going to apply

to the elements of Y is based on the use of tests of the type

introduced in [19]. We shall assume that cI > 0, which is not a

restriction, since c if negative, can always be made positive

by a substitution of the form y = I - y,. Further, in order toj!
be able to use in this context tests which place bounds on the

value of the objective function, we compute a lower bound y on
2

c x (the existence of which follows from that of a finite optimum

for MP):

(4.17) Y * min c 2xjA y + A 2x > b, 0 < yj y 1, J e NJ
X>O

We start with V = 0 which admits an arbitrary y c Y. We
CL) *

choose as a starting solution (root of 0.) y = 0, and set g =

In order to describe a typical iteration, let us suppose

that the last pseudo-solution generated was k'ýk with the
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aso.aekouiny stsyig(.) n htb ovn

L(y k) the system (4.9) has been augmented and updated so that

kit is not satisfied any more by y (we shall see that this is

the situation at the beginning of each new iteration).

1 0
Let Jl, J and N be the index sets defined by (4.13),

(4.14) associated with 4k' and let

i+ I- j • N l • < 0
(4.18) Nk = e Nklaij > 0) , k j 9 N <ij 0- , i V

(4.19) i= 0i - E 1 aiyi C V

(4.20) V = 6i i > 6)

We then proceed as follows:

Step 1. Compute

(4.21) 0, = i i+ 0ij i 4

If > 0 for some i e V+, backtrack (go to Step 4).

If < 0, v i e V+, go to Step 2.

Step 2. Let

(4.22) max 8i
0 iev

Order the indices j e Nko+ so that

11 1cj c cj

(4.23) 1/ < 2/ < . it

ili oJ2 1olt

and find an index jrE [jl,...,jt} such that

r.
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r=1 r
(4.24) E <E

h-l 0oh 0 h-l 0oh

Compute

* r-1 1 Cj r-1
(4.25) Ag g Y l c -E c jr E a )

JclJ h-l Jh (o0h-il 0oh
ktoir

where Y is defined by (4.17).

If Ag : 0, backtrack (go to Step 4).

If Ag > 0, go to Step 3.

Steps 1 and 2 are exclusion tests meant to identify such nodes

of athat cannot have among their potential descendants nodes assoc-

iated with feasible solutions y e Y "better" than the currently

best one. Thus, in the first test, if > 0 for some i e V

then the ith constraint cannot be satisfied by assigning whatever

values (0 or 1) to the free variables. Hence, one can backtrack,

i.e., abandon the current node of 6 1-(i.e., the current y) with

all its potential descendants.

The second test consists in choosing the "most violated"con-

straint, and computing a lower bound on the "cost" of satisfying it

by assigning values 1 to some of the free variables. Ag is the

difference between g and this lower bound, the latter being ex-

pressed as a sum of y (a lower bound on c 2x) and the rest of

the expression on the right-hand side of (4.25) (a lower bound on

c y). Hence, if Ag < 0, no descendant of the current node can

yield a lower value of g than g , and again we can backtrack,

i.e., abandon the current node with all its potential descendants.

Other tests used in [18, 19] or suggested elsewhere in a

similar context can also be introduced at this point.
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Step 3. Generate the pseudo-solution *k+l (and the assc,.-

Lated node of 0,), defined by

1 = 1 [jl'0 0 0
(4.26) Jk+l Jk 1  k+l = k

where Jl is given by (4.23),and update , i e V, i.e., set

(4.27) 1= a0j E i V
J k+l

A

If 01 > 0 for some i e V, set k + I = k and go to

Step 1.

s k + 1If 0 0, 1 c V, introduce y = y , the solution

associated with *k+l' into the objective function of L(y), and

go to Step 5.

Step 4. Backtrack to the predecessor h of the current

node k in L . Let y be the variable associated with the

backtracking arc. Update the sets Nh and Jho by replacing

them through Nh - (j) and Jo U (j). respectively, i.e.,
h h

remove j from the set of free indices by fixing yj at 0.

Go to Step 1. If backtracking is not possible (if we are at

the root of O2.and instructed to backtrack), terminate:

if g < -, the solution associated with g is optimal;

if g W O, P has no feasible solution.

Step 3 generates a new solution by fixing a hitherto free

variable at 1. If the solution

associated with the new pseudo-solution obtained in this way is

not feasible, the tests are repeated. If it is, one introduces

the new vector y into the objective function of L(y) and

one goes to the step dealing with L(yS).

In "tep 4 we backtrack to the predecessor of the current
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node, and by fixing at 0

the variable associated wich the backtracking arc we make sure

that the abandoned node and its potential descendants will

never be visited in any future step.

Step 5. Solve (post-optimize) L(y 8 ).

If L(y8) has an optimal solution u

add to (4.9) the constraint

s * S
(4.28) (uSA cl)y > u b- g +c

Then, if gS < g*, update g* in all constraints of type (4.7) by

s 8 s
setting g* = g . If L(ys) has no finite optimum, let us + Xts

be a feasible solution for any X > 0. Add to (4.9) the constraint

(4.28), and the constraint

si s(4.29) t Aly > t b

In all cases, if JVJ<_ 2n, where (VJ stands for the current

number of constraints (4.9), go to Step 1. Otherwise go to

Step 6.

Step 6. If at Step 5 we have generated one constraint, drop

from (4.9) the constraint i, defined by

A
(4.30) min m

* e iV

If at Step 5 two constraints have been generated, drop from

(4.9) the constraints i,, defined by (4.30) and i**, defined

by

(4.31) min

I I I • : " F • I Fz I IIF •" II I. ,
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Go to Step 1.

In Step 5 the solution (post-optimization) of L(ys) is

used to generate one or two new constraints for (4.9). If the

objective function of L(ys) at the optimum is smaller than g*,

the latter is replaced by the new value in all constraints of

type (4.7).

Step 6 is meant to keep the number of constraints constant

after a certain level has been reached, by eliminating the

"loosest" constraint (or pair of constraints). The level chosen

here, 2n, is arbitrary, and can of course be changed (the

more constraints are retained, the more efficient the tests tend

to be, but the more time it takes to apply them).

From the above comments it should be clear that the algorithm

ends in a finite number of iterations. The solution associated

with the last value g is optimal; if g + w, P has no

feasible solution.

Indeed, Y is a finite set, and in the process of enumerating

its elements we abandon a subset of elements (associated with a

node of and its potential descendants) only when we can con-
h

clude from the tests that there is no element of the subset

which satisfies the current constraints and is "better" than the

currently "best" element. On the other hand, Theorem 4.1 shows

that a vector y e Y can possibly be "better" than the current

"best"one only if it satisfies the current constraints (4.7),(4.8).

Finally, the implicit enumeration technique is such that no

abandoned node can ever be visited again - nor can any of the

potential descendants of such a node be generated.

The above algorithm is closely related to the partitioning

procedure of Benders [2]. The Benders procedure, however, pre-
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scribes for phase I the finding of an "optimal" y e Y, i.e.,

one that maximizes , which implies the solution of an integer
0

programming problem each time we get into phase I. Our pro-

cedure avoids this, and requires only the finding of a feasible

y € Y in each phase I, so that the complete seqq once of phases I

amounts to solving one simple integer program. This procedure

is essentially identical with the one described by Lemke and

Spielberg [17], with the following minor differences:

(a) we work with L(y) rather than its dualswhich permits the

use of a primal algorithm for the post-optimization required in

each phase II; (b) we generate the lower bounds (4.17) and (4.25)

and use them in what seems to be a strong exclusion test; (c)

we work with a fixed number of constraints (4.9).
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5. An Algorithm for Integer and Mixed-Integer

Nonlinear Programming

We shall now discuss a generalization of the procedure described in

section 4 to the nonlinear case [7,9].

Consider the mixed-integer nonlinear program

max f(yx)

(P) F(y,x) < 0

ycY , x > 0

where f(y,x) is a scalar function and F(y,x) an m-component vector function

of yeRn, xeRp, and Y C Rn is the set of n-vectors with nonnegative integer

components. This is a special case of problem (P2) of section 2, in which

mI 1- 0.

Let ucR and let the function

(5.1) K(y,x,u) = f(y,x) - uF(y,x)

be differentiable in y and twice differentiable in x.

The dual of (P), as defined in section 2, is then

max min g = K(y,xu) - xvxK(y,x,u)

y xu

(D) vxK(yx,u) :< 0

ygY ; x'u ; 0

Problem (D) does not seem to be of any use in solving (P), since

its inequality set contains the integer-constrained primal variables y,

and its objective function is nonlinear in the latter. However, in
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section 3 we have introduced a linearized (in ygY) dual (DI) of (P). We

shall use a slightly different notation here, in that we shall continue

to denote by y the integer-constrained variable of the dual, and shall

let the newly introduced variable seRn to be continuous:

max min g' = K(s,x,u) - (s,x),7,xK (s,x,u) + yv 5K(s,xu)y s,x,u

(D') VxK(s,x,u) < 0

ycY ; s,x,u - 0

Here Vs K = ('sK,V K), 7sK being the vector of partial derivatives

of K in the components of s.

The inequality set of (D') is independent of the integer-constrained

variables y; moreover, the objective function g' is linear in y. Ii view

of the results of section 3, this opens the way to the approach of solving

(P) by solving (D'). lo restate those results relating (D') to(P) for the

special case under consideration, we recall from section 2 that the regularity

condition for the above problems (P), (D') is as follows:

(a) If (P) has an optimal solution (3,x-), che inequality set F(3-,x) K 0

satisfies the Kuhn-Tucker [16] constraint qualification at x - x.

(b) If (DI) has an optimal solution (ysku), the matrix

/2 K(g,^,u) is nonsingular.
x

Denoting by Z and W' the constraint sets of (P) and (D') respectively,

the relevant parts of Theorem 3.1 become for this case

Theorem 5.1. Let f(y,x) and each component of -F(y,x) be differen-

tiable and concave in y,x on the set ((y,x)eRn×RPly,x Ž 0], and assume
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that (P) and (DI) meet the regularity condition. Then

a) If (yix) solves (P), there exists ueR such that ( ,4,Fu),

where ! = 3, solves (DI).

b) If (•,•,;,R) solves (DI), then ^ = 6 and (f,R) solves (P).

c) In both cases a) and b),

(5.2) max Cf(y,x)I(y,x)CZ] = max mrin g'l(y,s,x,u)cW']
y sx 2 u

The proof of this theorem is along the same lines as that of Theorem 3.1,

with the following observations:

o) The linearity of K(y,x,u) in u, along with the assumptions on

f(y,x) and F(y,x) and the regularity condition, make up for

assumptions 1,2, and 4 of Theorem 3.1. As to assumption 3 of that

theorem, it is taken care of by the fact that m1 - 0. Assumption 5

holds by the daftnition of Y.

•) The regularity condition required for Theorem 3.1 can be replaced

by the weaker regularity condition stated above, because the

duality theorems of Wolfe [13] and Huard [15] can now replace

the one by Daoczig, Eisenberg and Cottle [10] in the proof of the

above theorem.

Remark 1. In the regularity condition stated above, the Kuhn-Tucker

constraint qualification can of course be replaced by that of Slater [20]

or Arrow-Hurwicz-Uzawa [21], or any other constraint qualification under

which the duality theorem of [13] holds. On the other hand, if the regularity

condition for (D') is replaced by the weaker "low-value property" requirement

introduced by Mangasarian and Ponstein [22], then the "strict" converse
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duality statement b), based on [15], has to be replaced by a weaker converse

duality statement of the type [22). In all these cases, the theorem can

still serve as a basis for the algorithm to be described below.

Remark 2. If RnXRP reduces to Rn, i.e., (P) is a pure integer

nonlinear program in y, its linearized dual (D') becomes a mixed-integer

max-min problem (D0 ) in nonnegative variables, otherwise unconstrained,

and linear in the integer-constrained variables:

(DO) max min K(s,u) + (y-s)vsK(s,u)
yeY s,u ;_O

Before discussing the algorithm, let us consider the case when

(5.3) K(y,x,u) C cy + c x + ub -u(A y + A X) + 2(y.X)C x)

where b,c = (,c), A = (,A 2) and C are of appropriate dimensions,

C being symmetric. (P) is then the mixed-integer quadratic program

max c y + c2 x + 2(yx)C (
(P) A1y + A2x < b

yCY ; x > 0

whose dual is

max min ub - 1(y,x)C¢x - v y
y x,u

(D) uA- (y,x)C- v =c

2 1
ycY ; x,u,v > 0 ; v unconstrained
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and whose linearized dual (D') is j
waxadaub - 1sx)Cmax rain 2 (s~) - v

y tx,u

(DI) uA- (s,x)C- v,- c

2 1
yeY ; s,x,u,v > 0 ; v unconstrained

No regularity condition is required for this case, and Theorem 5.1

becomes H
zhgoIre.2. Let C be negative semi-dafinite. Then

a) If (y,,,) solves (P), there exists VeRm such that (yT,3,U),

where s ,solves (D').

b) If (9SX,- solves (D'),, there exists 'XeRP such that S,.,

where •= 9, also solves (D'), while (^,x^) solves (P).

The proof is along the same lines as for Theorem 3.1 with the use

of the quadratic duality theorem of Cottle [12] in place of the strict non-

linear duality theorem of [10].

We shall now discuss a method for solving integer or mixed-integer

nonlinear programs, based on the above results. The basic idea of the

method is to solve (DI) instead of (P).

We ahall consider the mixed-integer nonlinear program (P) introduced

at the beginning of this section, and assume that f(y,x) and each component

of -F(y,x) is concave and differentiable in y and x on [(y,x)¢RneRPjy,x 0 0).

Further, we shall assume that the integer-constrained variables are

bounded, i.e., Y is finite.
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Now consider the linearized dual (D') of (P), -hich is a mixed-

integer nonlinear problem in (y,s,x,u), with an objective function linear

In y, and a constraint set independent of y. For any given y¢Y, (DI)

becomes a (continuous) nonlinear program in (six,u), which we shall denote

by D'(y).

Let g1(y) be the objective function and Wt the constraint set of

DO(y), i.e.,

(5.3) W, =- (s,x,u)Iv K(s,x,u) o 0 , (s,x,u) o 01

We assume that W" 0 0 (this is always the case when (P) has an optimal

solution and meets the regularity condition).

The method we are going to discuss involves, as in the linear case,

the solution of a sequence of problems D'(y) defined by a sequence of vectors

yCY.

Since each problem D'I() is the dual of the concave program PG) obtained

from (P) by setting y = 7 (see the proof of Theorem 3.1), one can solve

D(y) by solving P(y) whenever the latter satisfies (or can be perturbed

so as to satisfy) the required constraint qualification. By "solving" a

problem DI(y) we mean finding an optimal solution or an C-solution (in the

sense defined, for instance, in [23]), or establishing the fact that D'(y)

has no finite optimum. Further, we shall have to assume that at the end of

the whole procedure, when an optimal solution (or c-solution) to (D') has

been found, the regularity condition required in Theorem 5.1 holds (or

can be made to hold by some perturbation). However, this assumption is

not needed in the case of a mixed-integer quadratic program, as it was

mentioned above.
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Now suppose we solve D'(y) for y y . [l,..., = Q

(y ky,kgQ). For each keQ, exactly one of the following two situations holds:
a) D,(yk) has an optiml solution (or an C-solution)(sk, Xk u)

b) gv(yk) is unbounded from below on W".

For case b) we have

h =m.1 If g,(yk) is unbounded from below on W", there exist vectors

a kCR, nx kR, ukRm and t kR m, such that

(5.4) (s kx k,u )W" , tk 0>

(5.5) VxtkF(sk,xk) > 0

and

(5.6) "t (sk,xk) + (skxk)Vxtk(sk,xk) - ykvtx (sk,xk) < 0

Z. Let e = (l,...bl)eRm and let geRp, E > 0 be such that

K(y g,e) 5 f(yk,•) k eF(y ,k) is finite. The existence of such a

vector C follows from the assumption that f(y,x) and F(yx) are differen-

tiable (hence continuous). Then for any (s,x,u)CW"

g'(y) k K(s,x,u) + [(yk,) k (s,x)]VK(s,x,u)

(since §VxK(s,x,u) :5 0]

> K(y k, u) [by the concavity of K(s,x,u)].

Since K(y ,k,e) is finite, it follc'-i that for any finite ueRm,zk g~)(k)
K(y kg,u) is also finite, and g'(y ) is bounded from below. Hence a

necessary condition for g,(yk) to have no lower bound on W" is the existence
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of k kx ku and such that, if • is a scalar,

a) (s ,kx ,u + Xt )eW" for arbitrary X > 0, which implies (5.4) and (5.5)

b) for (sx,u) = (skxkuk + Xtk) and 0 , O gI(yk) is a decreasing

function of X, which implies (5.6) O ....

Having solved D'(y) for y = y kCY, keQ = fl...,q], let Q - Qto Q2 . with

Q, = £kcQIDI(yk) has an optimal solution (sk ,x ,u )k

(5.7) 9'yk)is unbounded from be low on W" and

0Q2 1  6QI'2 •kQl k k kk

8 ,x ,u ,t satisfy (5.4),(5.5) and (5.6)

k yk )sk k k

For each keQ, let g stand for the value of g'(y ) for (s,xu) = (sx ,I U )

i.e., let

(5.8) gk = K(s kx ku) . (s kxk)VsxK(skxk uk) 4,u yvK(s kx ku)

Further, let
k

Smax g if Q 1 y0

( 5 . 9 ) & * =e_

-O if Q, 0 0.

Theorem 5.4, Any yCY (if one exists) such that

(5.10) min g'(y)I(s,X,U)ew,,] > g*

satisfies the constraints
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(5.11) yv8 K(sk$Xk'Uk > g* gk + y Kj(sk Xk Ou) kgQ

_y~tk~s,,P) > kFk k) _ (k k Vtkr(sk'Xk) k(5.12) Xy~~sk:k Ž t~Fs, 5, v, Q2

k k kk k
,where s Ox u t and g are defined by (5.7) and (5.8).

Z~of Suppose yCY does not satisfy (5.11) for peQ. Since

(spxpUpcw.,this impliesII

inf (g'(y)j',6X,u)CW" • ('xs,' -('XV K(sp,xp,up) + yK(sp,xp,up)

which contradicts (5.10).

Now suppose yCY violates (5.12) for pCQ2. Then, since

(spXP'uP + ktp)CW" for any X ;Ž 0, we have

=K(sp,xp,up)-(sP,xp)v7 s'K(sp Ixp'P)y7Ks up

But then in view of (5.7) and T1heorem 5.3 the right-hand side,

and hence also the left-hand side of ~he obove expression can be decreased

atbitrarily by increasing X, which contradicts (5.10). 2&4.d
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Corollary 5.4. If there is no yeY satisfying the system (5.11),(5.12),

then either

a) Q1 = 0 and (P) has no feasible solution, or

b) i y 0 and the vector y*CY associated with the last g* defines

an optimal solution to (P).

Proof. If Q = 0, g'(y) has no lower bound on W" for any yeY. Hence

(Theorem 1, [13]) the dual of the convex program D'(y) has no feasible

solution for any ycY, and so (P) itself has no feasible solution.

If Q, 1 0, denote by (s*,x*,u*) the optimal solution to D'(y*). Then,

if (D') meets the regularity condition, (y*,x*) is an optimal solution to (P)

(Theorem 5.1). If not, and if the regularity condition is not required

(like in the quadratic case), ttien the optimal solution to the concave

(quadratic) program P(y*) obtained from (P) by setting y = y* is also an

optimal solution to (P)(Theorem 5.2).

Based on the above results, we can now formulate a procedure for

solving integer or mixed-integer nonlinear programs with the required

properties (shown in Theorems 5.1 and 5.2), which generalizes to these

cases the algorithm discussed in section 4.

Phase I. Find y 6eY satisfying the linear inequalities (5.11),(5.12).

(At the start this constraint set is vacuous; thus y CY is arbitrary.)

Go to Phase II.

Phase II. Solve D'(yS). If it has an optimal solution (e-solution),

generate a constraint (5.11) and, if gS > g*, update g* (i.e., set g* = gs).

If gh(yS) has no lower bound on W", generate a constraint (5.11) and a
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constraint (5.12). Then go to phase I.

tieorem 5.5. In a finite number of iterations, the algorithm consisting

of phases I and II ends with the set (5.12),(5.13) having no feasible

solution yeY.

IftOo- When a new constraint (5.12) or (5.13) is generated in ptiase II, it

is violated by the last yeY found in phase I. Hence no constraint is gene-

rated twice (a new constraint, violated by y, cannot be identical with any

of the old ones, satisfied by y); and no yCY is generated twice (a new yCY,

satisfying all current constraints, cannot be identical with any of the old

ones, each of which violates at least one of the current constraints). Since

Y is assumed to be finite, the theorem follows.

Remark. This proof is valid as long as all the constraints generated

under the procedure are kept and used in each phase I. If they are not,

convergence will depend on the non-redundancy (convergence) of the proce-

dure for generating the elements of the finite set Y, as in thu case of the

algorithm of section 4. On the other hand, it is easy to see that the above

convergence proof is not affected if in phase II, whenever g'(y) has no

lower bound on W", we generate only a constraint (5.12), instead of also

generating a constraint (5.11). This may sometimes be preferable [7], as a

direction vector t may be easier to obtain than the associated feasible

solution (sS,x Sus) to D'(yS).

The procedure outlined above can be implemented in several ways.

Phase I is a search for a solution y to the constraints (5.11),(5.12)

over the set Y. As shown in section 4, this search is not to be restarted
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from the beginning for each phase I; rather the successive applications of

phase I should constitute successive stages of a single search process over Y. If

Y ( [0,11n, the implicit enumeration techniques known for linear programs

in 0-1 variables, with their various exclusion tests, can be used here as

in section 4. If Y is the set of nonnegative integers, then a technique

of the type discussed in [16], p. 942-943, or in [7], can be used to trans-

form thc problem in integer variables into one in 0-1 variables at a rela-

tively modest price in terms of problem size, and the implicit enumeration

techniques are again applicable.

As to phase II, from a computational standpoint it seems preferable,

whenever it is possible (see Theorems 5.1,5.2), to find an optimal solution

to D'(ys) by solving the problem p(ya) obtained from (P) by setting y = yS.

If, for some scQ1 , P(yS) does not satisfy the constraint qualification at

the optimum, the optimal solution of P(y S) may still yield an e-solution

to D'(yS). Should this not be the case, the current yS can simply be

dropped and another yeY generated. This will not affect the convergence

of the procedure, provided one makes sure that yS is not repeated.

This procedure is perfectly valid (in fact, considerably simplified)

in the special case when all the variables of (P) are integer-constrained.

The inequality set of (D') is then vacuous, and (D') becomes the problem

(DO) shown in Remark 2 to Theorem 5.1. Since the concavity of K(s,u) in s

implies the relation

(5.13) K(s,u) + (y-s)vsK(s,u) > K(y,u)

which holds as an equality for s = y, phase II reduces to solving the
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problem D°(yk) in u:

DoykkI' kC k
D066 minK(y u) amin (f(y)-uF(y )1u;ŽO)

.u•O u

Whenever F(y k) 0, uk 0 solves D0(yk), and a constraint (5.11) which

now becomes

(5.14) yv f(yk) > g, - f(yk) + yk Vsf(y k)

is generated for phase I. Whenever Fi () > 0 for ieM+, K(yk,u) has no

lower bound on [ueRmlu ; 0). Then the vector tk such that tk 1 for +

and t - 0 for ieM+ defines a constraint of type (5.12) for phase I.

A detailed discussion of the above algorithm as specialized to integer

and mixed-integer quadratic programming, along with numerical examples,

is given in [7].

We shall now briefly explore the relationship of the procedure des-

cribed in this section to some other methods.

As mentioned above, our method can be viewed as a generalization for

the nonlinear case of the ideas underlying the partitioning procedure of

Benders [21 or the closely related technique of Lemke and Spielberg [17].

While Benders' partitioning procedure i3 generally used for solving

mixed-integer linear programs, it is in fact slightly more general than

that. Benders partitions a mixed-variables program into two subproblems:

a linear program (say, pl) and a more general problem (say, p2 , which

may be, for instance, an integer program--whether linear or riot); then

he solves the original problem by solving a sequence of subproblems Pl,

p2. But this partitioning method is subject to the following limitations

(also valid for the Lemke-Spielberg algorithm).,
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1. The objective function and each constraint has to be separable

with respect to the continuous variables, i.e., no term containing both

integer and continuous variables is allowed.

2. The objective function and the constraints have to be linear in

the continuous variables.

3. If the objective function and/or the constraints are not linear in

the integer variables, then the subproblem P 2will be a pure integer nonlinear

program for which a solution method has yet to be found.

The algoritbm described in the present paper does not have any of these

limitations: 1 and 2 are not required, and 3 does not apply: our corres-

pondent of Benders' subproblem P2 is a pure integer linear program.

Furthermore, while Benders' partitioning method becomes meaningless

when applied to a pure integer linear program (it replaces the integer

program with itself), the algorithm discussed in the previous section

replaces an integer nonlinear program by an integer linear program.

We shall now discuss the relationship between our method and the cutting

plane method of Kelley [24] for nonlinear programming, which, as Kelley

has shown, can be combined with Gomory's [25] cutting plane method for integer

programming. The constraints (5.11),(5.12) generated In our procedure

are hyperplanes that cut off portions of the set Y containing the current yeY,

hence they can also be regarded as "cutting planes". But there are some

basic differences:

1. Kelley's method generates a sequence of points outside the

feasible set, which converges on a feasible point. The first point which

is feasible, is also optimal, but no feasible point is available before

the end of the procedure. Ini this sense it is a "dual" method. The same
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is true when Kelley's method is combined with Gomory's one to solve

an integer nonlinear program (in this case of course "feasible" means

"a solution which is also integer in the required components).

On the other hand, the method described in this paper generates

"a finite sequence of feasible and (occasionally) infeasible (but integer

in the required components) points, with a subsequence of feasible points such

that each point in the subsequence is strictly "better" than the previous

one. At each stage, a currently "best" feasible solution is available.

In this sense this is a "primal" method.

2. Kelley's cutting hyperplanes define a convex set S' containing

the original constraint set S. The role of each newly generated hyperplane

is to cut off a portion of the set S'-S containing the current (infeasible)

solution. Similarly, Gomory's hyparplanes are meant to cut off a portion

of the set S'-S", where S" is the convex hull of the feasible integer points.

Thus, both types of hyperplanes cut off sets of points lying outside the

feasible (integer-feasible) set.

In our procedure, two types of hyperplanes are generated. Both of

them are hyperplanes in n-space, rather than (n+p)-space, i.e., in the

space of the integer-constrained variables rather than the space of all

variables, and they are used as constraints on the (and only on the) integer-

constrained variables yCY. The main role belongs to the hyperplanes of type

(5.11), which are meant to cut off as large a portion of Y (whether feasible

or not) as a hyperplane containing the current point 7 can possibly cut off

without cutting off any yCY which could yield, in conjunction with an

appropriate x, a "better" integer-feasible solution than the current "best"

one. When hyperplanes of the type (5.12) are generated, they are meant
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to cut off portions of Y containing points which cannot yield, in

conjunction with any x, a feasible solution,

3. In Kelley's procedure, a cutting plane is generated by replacing

a constraint function by its first order Taylor seties approximation in

the neighborhood of the current solution. In the notation of this section,

this would be

Pi(3-,i) + [(y,x) - G • 0

The dual problem does not play any role in the derivation of this

constraint.

To give a Lomparable interpretation to the cutting planes generated

in our procedure, consider the Lagrangian expression associated with the

primal , )blem

K(yu) f(y,x) - uF(y,x)

If the current integer point 7 (in n-space) is such that the function

K(y,x,u) in (x,u) has a saddle-point at CU), we generate a cutting

plane by requiring the first order Taylor series approximation of K(y,3E,j)

(considered as a function in y defined on fyly ; 0)) in the neighborhood

of y = = t to satisfy

(5.15) Ki,) + (y-y-)vsK(s,3,16) > g*

where g* is defined by (5.9). It is easy to Eee that (5.15) is the same as (5.11).

If K(y,x,u) has no saddle-point and 7,1 and t are such that

K(y_,3Z,U + J) -- - w when X - + w, then two cutting planes are generated,

one of the type (5.11) and a second one of the type (5.12). In each case



the dual vector u (or t) plays a key role in generating the constraints.

Hence, while our method also generates a certain type of cutting

planes, it differs substantially from Kelley's.

'F.
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